Muscle blood flow, hypoxia, and hypoperfusion.
نویسندگان
چکیده
Blood flow increases to exercising skeletal muscle, and this increase is driven primarily by vasodilation in the contracting muscles. When oxygen delivery to the contracting muscles is altered by changes in arterial oxygen content, the magnitude of the vasodilator response to exercise changes. It is augmented during hypoxia and blunted during hyperoxia. Because the magnitude of the increased vasodilation during hypoxic exercise tends to keep oxygen delivery to the contracting muscles constant, we have termed this phenomenon "compensatory vasodilation." In a series of studies, we have explored metabolic, endothelial, and neural mechanisms that might contribute to compensatory vasodilation. These include the contribution of vasodilating substances like nitric oxide (NO) and adenosine, along with altered interactions between sympathetic vasoconstriction and metabolic vasodilation. We have also compared the compensatory vasodilator responses to hypoxic exercise with those seen when oxygen delivery to contracting muscles is altered by acute reductions in perfusion pressure. A synthesis of our findings indicate that NO contributes to the compensatory dilator responses during both hypoxia and hypoperfusion, while adenosine appears to contribute only during hypoperfusion. During hypoxia, the NO-mediated component is linked to a β-adrenergic receptor mechanism during lower intensity exercise, while another source of NO is engaged at higher exercise intensities. There are also subtle interactions between α-adrenergic vasoconstriction and metabolic vasodilation that influence the responses to hypoxia, hyperoxia, and hypoperfusion. Together our findings emphasize both the tight linkage of oxygen demand and supply during exercise and the redundant nature of the vasomotor responses to contraction.
منابع مشابه
Local control of skeletal muscle blood flow during exercise: influence of available oxygen.
Reductions in oxygen availability (O(2)) by either reduced arterial O(2) content or reduced perfusion pressure can have profound influences on the circulation, including vasodilation in skeletal muscle vascular beds. The purpose of this review is to put into context the present evidence regarding mechanisms responsible for the local control of blood flow during acute systemic hypoxia and/or loc...
متن کاملHIGHLIGHTED TOPIC Hypoxia Muscle blood flow, hypoxia, and hypoperfusion
Joyner MJ, Casey DP. Muscle blood flow, hypoxia, and hypoperfusion. J Appl Physiol 116: 852– 857, 2014. First published July 25, 2013; doi:10.1152/japplphysiol.00620.2013.—Blood flow increases to exercising skeletal muscle, and this increase is driven primarily by vasodilation in the contracting muscles. When oxygen delivery to the contracting muscles is altered by changes in arterial oxygen co...
متن کاملEFFECTS OF HYPOXIC HYPOXIA AND CARBON MONOXIDE-INDUCED HYPOXIA ON THE CARDIOVASCULAR SYSTEM AND REGIONAL BLOOD FLOW OF THE ANESTHETIZED CAT
The purpose of this study was to investigate the potential responses of the cardiovascular system and regional blood flow to hypoxic hypoxia (BB) and to carbon monoxide (CO)-induced hypoxia (COH). Ten anesthetized cats were studied under two nonnoxic (control: CONT) and two hypoxic conditions. Four types of radioactive micro spheres were used to measure regional blood flow during CONT an...
متن کاملHypoxia is not the sole cause of lactate production during shock.
BACKGROUND Traditionally, elevated blood lactate after hemorrhage is interpreted as tissue hypoperfusion, hypoxia, and anaerobic glycolysis. The severity and duration of the increase in blood lactate correlate with death. Recent in vitro studies indicate that epinephrine stimulates lactate production in well-oxygenated skeletal muscle by increasing activity of the Na+-K+-adenosine triphosphatas...
متن کاملNo hypoperfusion is produced in the epicardium during application of myocardial topical negative pressure in a porcine model
BACKGROUND Topical negative pressure (TNP), commonly used in wound therapy, has been shown to increase blood flow and stimulate angiogenesis in skeletal muscle. We have previously shown that a myocardial TNP of -50 mmHg significantly increases microvascular blood flow in the myocardium. When TPN is used in wound therapy (on skeletal and subcutaneous tissue) a zone of relative hypoperfusion is s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 116 7 شماره
صفحات -
تاریخ انتشار 2014